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I. SUMMARY

Analytic investigations, or more precisely, the computer simulation
of flows through a cascade of blades in turbomachines have become
more and more important as an essential source of information for
the design of high performance turbomachines in recent years, because
the pure- and semi-empirical approaches are both costly and time-
consuming.
The OBJECTIVE of the proposed study is not only to develop a
new numerical solution technique to simulate the transonic cascade
flow through turbomachines, but also to improve the understanding
of the basic characteristics of turbomachine flows through a systematic
process of improvements to increase the level of model sophistication.
The Finite Element Method (FEM) is chosen for its advantages
of generality and simplicity of both mathematical formulation and
numerical solution. It is especially suitable for solving problems
with irregular boundary geometry including curved as well as sharp-
cornered ones, because the shape and size of each element may be
specified arbitrarily and sides of each element may be curved. There-
fore, the complication of governing differential equations through
coordinate transformations needed to result a rectangular computation
domain in finite difference schemes can be avoided, and the accuracy
as well as computing efficiency may be improved by adjusting the size
and shape of the elements. Supported by an AFOSR grant (AFOSR-76-2982),

the Phase I, Two-dimensional Potential Cascade Flows, and the Phase II,

Two-dimensional Viscous Cascade Flows of this project have been completed.

Results obtained from the Finite Element Modeling are not only
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comparable with those obtained by other numerical schemes, but also
sound physically. Since the simulation of these two cases are intended
only as stepping stones for studying the model of higher Tevel of
sophistication, rather than duplicating the extensive results obtained
by various other numerical schemes; the primary contribution of this
project is the development of the new modeling technique, based on
the FEM.
The success of the FEM in the structure analysis of the turbomachine
has been remarkable. Many previously intractable problems in structure
design and vibrational analysis have been reduced to routine calcu-
lations by using this powerful tool. It is reasonable to believe that
the application of FEM in the aerodynamic design of turbomachines
shall be successful also in the near future, although there is still |
a great deal to be done. As the capacity and the speed of modern i
digital computers continuing to improve, it is expected that the
development of three-dimensional flows through turbomachines is
highly promising. Therefore, it is highly recommended that the support

in this area be increased.




II. A GENERAL DESCRIPTION OF THE PROJECT

The Over-all Objective of the study is to develop a new and
efficient technigue for turbomachine flow simulation. The FEM is
chosen for its advantages of generality and simplicity in both model
formulation and solution. It is especially suitable for solving problems

with irregular boundary geometry including curved and sharp-cornered ones,

because the shape and size of each element may be specified arbitrarily

and the sides of an element may be curved. Therefore, the many diffi-

culties due to signalarity or discontinuity are eliminated and the

computing efficiency can be improved by simply adjusting the size and

shape of the elements as appropriate. Following the basic approach

of a systematic process of improvements to increase the level of

model sophistication, the over-all objective is to be accomplished in

several phases. The First Phase is the development of a system of

basic computer subroutines for carrying out every step of formulation

as well as solution using the FEM. Although the testing case used in

the first phase is the potential cascade flow for the convenience of

verification; the computer codes developed are carefully designed so

’ that they may be used, either as they are or after minor modification,
as "building blocks" to "construct" programs for simulating flow models
at higher levels of sophistication. Results obtained in the Phase I

> studies are in good agreement with those published elsewhere. Studies
for improvement of efficiency of each subroutine as well as the overall
system have also been completed. A brief outline of the significant

) accomplishment of Phase I studies is given in Chapter IV. More details

are included in a paper entitled "Computer Simulation of Cascade Flows
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in Axial-Flow Compressors" and Su's thesis entitled Computer Simulation
of Cascade Flows of Ideal Fluids. Copies of these two publications are
given in the Appendices of this report.

Although both Viscous Cascade Flows and Compressible Cascade Flows
are proposed for simultaneous study in the Phase II of the project; the
last minute reduction in support by AFOSR, has forced the investigators
to concentrate their effort on the Viscous Case only. Results obtained
from the Phase II study is briefly presented both in Chapter V and in
an Abstract of a paper entitled Finite Element Modeling of Two-dimen-
sional Viscous Cascade Flows (see Appendix A-1).

If further fundings are available, the investigators would like to
continue their contribution in the advancement of the state-of-the-art
on Finite Element Method in Turbomachinery Flow Simulation. They
have experienced that the FEM is extremely suitable for the highly
irregular geometry of turbomachinery flows, that the computer codes
developed are quite general and versatile, i.e. one program can be
applied to several different cases, and that computing time can be
reduced by refining the algorithm. Therefore, they are confident that
the success of the FEM application to aerodynamic analysis of the
turbomachinery design may match that of the FEM application to the
structure and vibration analysis of the turbomachinery design in

the near future.




ITI. LIST OF PUBLICATIONS

The following is a chronological bibliography of publications
and significant scientific papers resulting from the work performed

under the support of this grant (AFQSR-76-2982):

1. Wang, S.Y.; Mach, K.D. and Su, T.Y.; "Computer Simulation of
Cascade Flows in Axial-Flow Compressors" presented at the First
International Conference on Applied Numerical Modelling, held at
University of Scuthampton, England, July 11-15, 1977. Published
in the book, Applied Numerical Modelling, ed. by C.A. Brebbia,
Pentech Press, London, 1978.

2. Wang, S.Y.; "Finite Element Solutions of Transonic Flows in
Axial-Flow Turbomachines" Progress Report submitted to US-AFOSR,
Jan. 20, 1977.

Wang, S.Y.; "Finite Element Solutions of Transonic Flows in
Axial-Flow Trubomachines, Phase I: Potential Cascade Flows,"
Interim Scientific Report submitted to US-AFOSR, July 30, 1977.

(U]

4. Su, T.Y.; "Computer Simulation of Two-dimensional Cascade Flows
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IV. RESULTS OF POTENTIAL CASCADE FLOWS

Using the two-dimensional potential flow through a cascade of
airfoils as a testing case, results have been obtained in terms of
velocity, stream function, and pressure distribution (Figures 1, 2,
and 3). They are not only physically reasonable, but also in good
agreement with both analytic solution of the potential flow theory
and some experimental data of low-speed turbomachinery flows.

Extensive effort has been devoted in developing computer codes
being both accurate and efficient. Since the shape as well as the
size of each element affect the accuracy of the F.E. Solution, and the
number of elements used in discretization of the flowfield will be
related to the computing time required for generating solution;
several F.E. systems have been studied. The isoparametric formulation
using quadralateral elements (Figure 4) have been found more desirable
than using triangular elements (Figure 5). The correlation between the
computing time required and the number of quadrilateral elements used
in the discretized domain has been found. It seems that the computing
time required is roughly proportional to the cubic power of the number
of elements used. More importantly, results with good accuracy have
been obtained from an element system with relatively small number of
e]anents; .]though one can always generate more accuracy for a great
deal less. It is worth noting that since the FEM is essentially an
implicit scheme; therefore, one does not have to worry about the
problem of computational instability at all.

Each computer code (subroutine, function, etc.) as well as the

computer program has been carefully examined and tested to insure




that they all be highly efficient. For example, using the Incident

Symbol to assemble Tocal finite element equations into a complete set
of global equations is the most convenient way to do the job as far

as the mathematics and programming are concerned; unfortunately,

it requires a lot of computer storage and computing time, thus, not
efficient. A new scheme has been developed by us, which saves both
computer storage and, more importantly, reduces the computing time by
two-thirds. With this improvement, a potential cascade flow can be
completely solved by our computer program within a few minutes.
Therefore, we are quite encouraged to attack turbomachinery flow models
of higher level of sophistication.

The stream function as well as the velocity potential formulations
have also been tried. It has been found that although the velocity
potential formulation gives better pressure distribution on the surface
of airfoils; however, some difficulties in defining the boundary
conditions at the exit of the computing domain (see Figure 4) have

been experienced. Fortunately, the uniform velocity assumption

seems to give good resuits. On the other hand, the stream function
formulation, has been found being much more convenient than the velocity
potential formulation, because the boundary conditions required are
not only of the Dirichlet type but also needed only on solid and
4 periodical boundaries, (no boundary conditions are needed at the entrance
and exit plans) and its solution is quite accurate in the entire flowfield.
This is another advantage of the FEM or the Variational Method in
general for that matter.

Of the different element systems attempted, it has been found that the

ones we developed (see Figure 4) are superior than the ones used by




previous workers (see Figure 5 and 6). The element system developed

by us involves less number of elements than thoso required by the one
in Figure 5 to achieve the same accuracy; therefore, it is more
efficient. It is better than the one shown in Figure 5 from another
viewpoint, that is that global coordinate of each node can be easily
gjenerated by computer rather than determined by some measurement and
put into the computer as an input data file. Compared with the compu-
tation domain shown in Figure 6, it is obvious that ours is more
reasonable, because a large portion of fiuid in the exit region of
the domain in Figure 6 didn't come from the entrance of the domain,
so that there are inconveniences in imposing boundary conditions in
the case of Figure 6.

[t should be emphasized that the Kutta Conditions at the trailing
edges of the blades are extremely important to the accuracy of the
Finite Element Solutions of potential cascade flows. A few cases of
blades with very thin trailing edges have been tested without imposing
the Kutta conditions. Results are found to be very sensitive to the
thickness of the trailing edges. |

A copy of the paper summarizing the approach to solution as well
as typical results has been published in a book, APPLIED NUMERICAL |
MODELLING, edited by C.A. Brebbia, printed by Pentech Press, London

is included in the Appendices of this report.




Figure l-a FE Solution Velocity Distribution with
Element System Superimposed
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Figure 1-b FE Solution
Velocity Vector Field (Computer Plot)
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Streamline Plot (FE Solution)

11

—e— -



( ’
&t
b
o §
3
Q- .0
.1.;
~
ik
\ !
Fi 3
| s 8
I
g
u -~
S
(39
¥

w

&=

Figure- 3

I
|

’} 2 4 6
' . o
! v
o9 VB
v
75
b v \"4

Pressure Coefficient Distribution of a Symmetric Airfoil

12




{
mrrance {

|
{
{
}

Py
A
i
| |

|

|

S e

[ e i —
¥

Figure-4

Isoparametric Finite Element

13

i >
e

i

//'

Pr

e

<~

Bxit




(‘s g ‘uosduwoyy -32)

TT0JITY PaXaquWey) e 103 wWAISAS JULWATY 93ITUTY & -eand1g

14




el e ot el ™
.\\.\.\\ A
\\.\.\ Sl i il it
_“.\\\\\\.\.\a\.\.\.\q_\
i gl L
~\.\ \.\.\.\.\.\.\\.\.\
e o \.\.\.\\\\
. \\\\.\.\\\\.\
. \\\\\\\\\
PR 0 F & P
dd d b LELELS
P ERERELAL
\\.\\\\.\.\\\
!
|

Figure 6 Computation Domain used D)

b 4
Iy
Lo
o3

bkl

i
b
:
i
)
)

o i il e ik il s -




V. RESULTS OF VISCOUS CASCADE FLOWS

Due to the relatively narrow passages of the turbomachinery
flow and the physical evidences of boundary layer formation, Separation
and reattachment, etc, the viscous effects appear to be important.
Therefore, the Phase Il of the project is the Finite Element Modeling
of the Two-dimensional, Viscous, Cascade Flows. Following the policy
of a systematic approach to increase the level of model sophistication,
the low-speed laminar case was considered.

The basic assumptions, mathematical model development using the
FEM, solution procedures, and results obtained will be discussed in
details in a Forthcoming paper entitled, "Finite Element Modeling
of Two-dimensional Viscous Cascade Fiows", to be submitted for
publication in the proceedings of the Second International Conference
on Computational Methods in Nonlinear Mechanics. Its final draft
will be sent to ASOFR for review. A copy of its Abstract is attached
in the Appendices of this report,

The computer plots of a few typical cases are given in figures
7, 8, 9 and 10. The effect of pressure difference between the entrance
and e.it of the cascade is seen in figure 7 and 8, which shows that
the speed is increased when the pressure difference is raised. When
angle of attack is changed from 5° to 10“, only minor variation in
flowfield is seen in figure 8 and 9, This is probably due to the
strong pressure gradient which may have dominanted the flowfield charac-
teristics. The effect of blade shape, the thickness and camber of

the blades, is more pronounced. As one can see from fiqure 10, that

16




there seems to have a separation region existing over the last one third

of the suction surface, which is a phenomenon one expects in the
viscous flow. Generally speaking, the flowfield properties obtained
from the present finite element modeling are physically reasonable and
comparable with those of others published.

One special feature added to the F.E. Modeling technique for the
two-dimensional viscous flow case is the utilization of the Mixed
Interpolation Functions. The first order interpolation functions are
used for approximating the velocity field, and the second order inter-
plation function is adopted for approximating the pressure field.

This is necessary for achieving the uniform errors in pressure field
and velocity feild; because the highest differential operators of
pressure and velocity in the Navier-Stokes equations are of different
orders. Although more computer storage are required, the results are

much better.

17
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VI.  CONCLUSIONS

Finite element models of the steady, two-dimensional, potential,
as well as viscous cascade flows have been developed. Numerical re-
sults for various cases have been generated using a Fortran IV Computer
Code including several subroutines, functions, as well as a main
program. Results of typical cases, such as ones plotted in figures
1, 2, 3,7, 8, 9, 10 conform well with the potential and viscous cascade
solutions of others. By examining the velocity vector plot (figure 1),
one can see that the magnitude of the velocity increases where the cross-
section area of the flow path decreases and vice versa. The direction
of the velocity at every node on the pressure and suction surfaces
has been calculated and found tangent to the blade surface in the
case of potential flow model.

To further verify the correctness of the Finite Element Solution,
the normalized static pressure distribution along the pressure and
suction surfaces uf the cascade flow is reduced from the stream function
solution and plotted Figure 3 to compare with the Delaney's* result
based on the highly sophisticated finite difference model as well as
some experimental data of hte same cascade configuration provided in
Delaney's dissertation. The deviation between the finite element
solutions and Delancy's result is primarily due to the difference in
the basic mode! assumptions. The present model is based on the in-

compressible fluid assumption; whereas Delaney's model was

*References are listed only in Su's thesis (See Appendix A-3) to
avoid duplication.
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based on a subsonic compressible flow assumption. The primary reason
for comparing with Delancy's results is the fact that his cascade
geometry is adopted for the present study. In the same figure, one
can also see the fact that the pressure distribution reduced from the
velocity potential solution is in better agreement with Delaney's
results than that from the stream function solution. It is generally
true that the velocity potential solution is more accurate than the
stream function solution. However, the stream function formulation
is more convenient in specifying the boundary conditions..During
the present study, the Kutta condition at the trailing edge has been
carefully satisfied. It has been observed numerically that without
Kutta condition a slight deviation in trailing edge thickness of a
very thin trailing edge results a large change in flowfield properties,
especially the static pressure distribution. This observation demon-
strates the importance of the Kutta condition at the trailing edges.
Results of two-dimensional, viscous cascade flows are presented
in figures 7 through 10. The effects of pressure gradient across the
entrance and exist, the angle of attack, and the blade shape have
been investigated. Some typical results are plotted by the computer
(see figures mentioned above). In gneeral, the pressure gradient
varies the magnitude of velocity away from the boundary layer of the
blades, the angle of attack at the entrance primarily affects the
direction of the velocity vectors, and the flow tends to separate
when the camber and thickness of* the blades are increased. More
detailed discussion on the viscous case will be given in a paper,

"Finite Element Modelling of Two-dimensional, Viscous, Cascade Flow".
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Its abstract is included, however, in the Appendices (A-1).
It should be emphasized again that the PRIMARY OBJECTIVE of the
present study is to develop a general computer code based on the

finite element method for solving the two-dimensional cascade flows.

The potential flow model is chosen to serve as a test case for veri-

fication purposes in the Phase I studies of this project. Based on

the aforementioned results, it is obvious that the computer code is
satisfactory and can generate reasonable flowfield characteristics

from a relatively simple element system.“Some effort has been

devoted in improving the efficiency of the finite element model.
Although an analytic way to determine the optimum configuration (size-
shape) of the finite element system for obtaining a reasonable accurate
result at least computing cost has not yet been established; the relation
between computing time and number of elements has been established

based on the computer experimentation of several different finite-
element system configurations. The computing time is approximately
proportional to the cubic power of the total number of elements used

to discretize the flowfield. Using this result one can, at least,
estimate how much more he has to pay for the better accuracy he gets

by increasing the number (reducing the size) of elements. Using a
special assembling technique developed by the investigators for
obtaining the global equation computing time has reduced. Although
this special (or improved) assembling technique is not as ceneral as the
incidence matrix scheme; it is definitely more attractive for developing
a production program. The basic concept of this special assembling

technique, and the details of this scheme are described in Su's thesis

in Appendix A-3.




One should also note that almost all subroutines and functions
developed from the present study are in a form as general as possible,
in order that they can be used in the future to simulate cascade
flows of hLigher level sophistication with little or no modification.

It "5 generally agreed to the fact that the computing time for
simulating a typical boundary value problem with moderately irregular
boundary geometry by the finite difference and finite element methods
are comparable at the present state-of-the-art. In view of the fact
that the finite difference schemes have been in existance much longer
and thus have much more refinements having been built in to them
than that of the finite element method, which is still in its infant
stage, as far as flowfield analysis is concerned. Thus, it is quite
clear that the finite element modeling of the cascade flow is more
promising in the future, because there is plenty of room for refine-

ment.
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VII. RECOMMENDATION

It is quite obvious that the realistic turbomachinery flow is a
three-dimensional, unsteady, non-uniform, and turbulent flow of a viscous,
compressible, and heat-conducting fluid with additional complications of
boundary layer separation, cavitation and even shock wave interactions
for some cases. Although the computer programs developed from the
present study are for the simpliest cases the two-dimensional, potential
as well as laminar viscous cascade flows, some basic subroutines are
directly applicable to more general and sophisticated models as well,
and some other subroutines require only minor modifications. With this
basic and quite general computer codes in hand, one shouldn't have to
much difficulty to attack the cascade flows of higher level sophis-
tication. Therefore, a major contribution to the application of FEM
to the aerodynamic analysis of turbomachines has been made.

As mentioned previously, the application of FEM in turbomachinery
flow simulation, or in any fluid flow studies, is relatively new. Many
computational fluid dynamists are still refering its development being in
the stage of infancy. It is quite true the much remains to be done in
order to refine the FEM for flow analysis to the stage that it can compete
with the well-developed FDM for the same purpose. It is, however, also
true that the appiication of FDM to simulating turbomachinery flows has met
with the difficulty of 1imits of both computer storage and computing
time, as well as the difficulty ta deal with the irregular geometry. It
may be wise to develop an entirely new apptoach, e.g. the FEM for
simulating the turbomachinery flows. And, from the currently existing

results for geometrically simple flow problems the computer storage




as well as computing time required by FDM and FEM are almost comparable.
Remembering that the comparison is made between a well-developed

Method (FDM) and a very crude method (FEM), one should believe that
with refinements the FEM is likely to show its effectiveness in flow-
field silumation especially for flows with irregular geometry.
Therefore, it is highly recommended that the Finite Element Modeling

of three-dimensional, potential, viscous and transonic flows through

turbomachinery be strongly encouraged.
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FINITE ELEMENT MODELING OF
s TWO-DIMENSIONAL VISCOUS CASCADE FLOWS

ABSTRACT

A new approach based on the Finite Element Method (FEM) to the
simulation of the cascade (blade-to-blade) flows through an axial-flow
turbomachines has been developed. Using the method of weighted residual

the variational functionals are formulated from the nonlinear

Navier-Stokes equations and the continuity equation for the case of
two~-dimensional, laminar flow of viscous and imcompressible fluids.

The rather irregular flow regime of the turbomachinery cascade can

be discretized into a set of well-designed two-dimensional, quadri-
lateral elements with the size and shape of each element chosen for the
optimum computing efficiency, i.e. requiring least computing time

under the constraint of a certain accuracy. The mixed isoparametric
interpolation functions have been adopted for approximating the field
properties with the first order interpolation for pressure field and
the second order interpolation for the velocity field, because the
highest differential operators of these two fields are of the first

and second order. The utilization of the mixed interpolation functions
gives more uniform errors in these two field quantities, and thus,
better uniform accuracy. The discretization in time-domain is accom-
plished by the method of finite difference. Therefore, the present

approach may be referred to as a finite element and finite difference

R ——————




T ——

technique.

The mathematical formulation steps, such as: deriving the finite
element equations, assembling into the global set, imposing boundary
and initial conditions, and rearranging the final global set to reduce
the computer storage requirement and improve the computing efficiency,
are carried out by a series of computer sub-programs. Each is designed
for a specific step. They are written in a form as general as possible,
so that they will be used as building blocks to construct computer codes

for modeling turbomachinery flows of higher level of sophistication.

Numerical results for various pressure gradient (between the entrance
and the exit), the angle of attack, and the camber and thickness of the
blades have been obtained. At relatively high pressure gradient, the
flowfield properties are almost dominated by the pressure gradient, so
that the effect of angle of attack is of minor importance. The evidence of
boundary layer separation is seen near the trailing edge over the suction
surface of the blade, which is expected for the viscous shear flow.

More extensive numerical results and computer plots will be presented
and discussed in the paper.

It has found that this new approach is very versatile with respect
to geometrical conditions (like curved and sharp-cornered boundaries)
which can be handled in a straightforward way. The computer storage and
computing time requirements have been comparable to the well-established
finite difference schemes for simulating similar problems. With

further refinement the FEM offers a promising alternative to the turbo-

machinery flow simulation.
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NOMENCLATURE

CV constant volumn specific heat

E internal energy

Fi component of body force in Xi-direction
P pressure

R gas constant

T temperature

T time
u velocity component in X1 (or X)-direction
' velocity component in X, (or Y)-direction

X,Y global and physical coordinates
Greek

éij Kronecker delta

K thermal conductivity
A bulk viscosity
u dynamic viscosity

£,n local coordinates

o density
¢ velocity potential
P stream function

Qn interpolation function

vi




CHAPTER 1

INTRODUCTION

A better understanding of the fundamental characteristics of the
flow through turbomachines has become increasingly important to both
experimental researchers and turbomachinery designers. It offers the
experimentalist a wiser choice of test parameters, and provides the

designer with the preliminary design information.

As the performance as well as the efficiency requirements have

become more and more demanding the turbomachines have to be operated

at much heavier aerodynamic loads and much higher inlet speed or
temperature. The real flow phenomenon within the turbomachines has
become extremely complex. It is a truly three-dimensional, unsteady,
non-uniform, rotational and turbulent flow of viscous, compressible,
and heat-conducting fluids involving boundary layer separation,
cavitation and reattachment effects, as well as the shock wave
interactions. Besides, the complicated boundary geometry causes
additional analytical difficulty. The mathematical model of real flow
through turbomachines includes a set of non-linear partial differential
and algebric equations (to be described in Chapter II). Recently,

the classical, over-simplified analytic solutions which provided

useful information for low-speed turbomachines in the past have been




found inadequate for modern turbomachine design. The empirical

approach also used in the past as a primary tool in the development of
turbomachines has been found too costly as well as time-consuming due to
the fact that there are too many parameters having to be considered
before an optimum configuration of the high performance turbomachine
can be determined. Futhermore, a failure occuring during the develop-
ment of a new turbomachine not only requires millions of dollars to
redesign, manufacture, and test its replacement, but also seriously
impedes the development cycle. Consequently, the numerical approaches
or computer simulations of more realistic turbomachinery flows have
become more and more important for preliminary design information and
for guiding the intelligent experimental studies to reduce unnecessary

tests.

Steady progress in the field of turbomachinery numerical calcula-
tions have been achieved during the past twenty years or so. The methods
of numerical approaches have changed significantly from one-dimensional
passage calculations to two-dimensional transonic calculations as well
as the three-dimensional inviscid and boundary layer problems. According
to the fundamental work of Wul, the three-dimensional inviscid flow
equations are formulated into two sets of two-dimensional inviscid flow
equations on pseudo-orthogonal surfaces. One of these flows is located
in blade-to-blade surfaces (the S1 surfaces); the other flow lying on
hub-to-shroud surfaces (the S2 surfaces). Information obtained from

solutions in blade-to-blade planes (S1) must be used in the meridional




solution (S2) and vice versa in an iternative solution scheme.
Approaches are made today with either streamline curvature, finite
difference or finite element formulations for the solution of realistic
turbomachinery flow problems with some success. The streamline curva-
ture method has been widely used in the solution of turbomachinery flows.
The finite difference approach is being developed and the finite element

method applied to turbomachinery flows is still in the stage of infancy.

Since the present work deals with two-dimensional flow through a
cascade of blades; so only a few contributions closely related to blade-
to-blade flows will be cited in the following. The streamline curva-
ture method and the finite difference method are now widely used in the
solution of the blade-to-blade equations for steady compressible flow.
In the first method, the streamline curvature method, a differential
equation for the gradient of steamwise velocity along the normal or
near normal to the streamline is written in terms of the assumed radius
of curvature of the streamline. This equation is integrated across
the blade passage to give the velocity. This method appears to give
satisfactory answers for isentropic transonic flow, but its validity in
flow with shocks must be open to doubt. In the second method, the
finite differnece method, the equation is written in terms of a stream
function satisfying the continuity equation, and solved by finite
difference schemes of matrix inversion or relaxation. Recent develop-
ments are in the category of the explicit finite difference solution

of the time-dependent Navier Stokes equation in quasi-conservative form
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governing the transonic flow of viscous and compressible fluid. Wang
and Mach?>3 had studied this approach carefully and attempted to improve
its computation efficiency as well as its accuracy. Unfortunately, it
has been found that not only its efficiency may not be improved
significantly, but also its many simplifying assumptions are unsound,
such as, it assumes that the location of stream surfaces is known

a priori without successive corrections, the flowfield variations normal
to the stream surfaces are ignored, the relation between the inlet and
outlet stream surface locations is linear, the fluid is perfect gas

with constant viscosity and heat-conductivity, etc. The improvement

of this model requires the redevelopment of the governing differential
equations involving several complicated coordinate transformations.
Furthermore, it is anticipated that the computation time of the improved
model will be increased substantially. On the other hand, the results
of this method are in good agreement only with the exact incompressible
solution, except near the leading edge where grid accuracy is frequently
compromised. Therefore, it may be wise to start the development of an

entirely new approach.

A promising solution technique should be simple, general, efficient,
and capable of handling models of higher levels of sophistication through
a systematic process of improvements. The finite element method is
chosen not only because it has these advantages; but also because it is

extremely suitable for the complex geometry of turbomachinery flows and

capable of simulating three-dimensional flows directly requiring only




minor modificaiton of the two-dimensional solution procedure. The
finite element method is not new, but considered well-established in

the turbomachinery world as a tool of the structural designer. Using
this tool, many previously intractable problems in structural design and
vibrational analysis have been reduced to routine calculations. In
comparison with these spectacular successes, exploitation and applica-

tion of this tool by the aerodynamic designer has lagged behind.

Recently, the effort in the application of finite element methods
to problems of fluid flow has been increased drastically. Numerous
reports have been published. Martin?, Argyris, Maryczek, and ScharphS
were among the earlier ones to study the application of finite element
methods to fluid flow probléms. The potential flows were treated by
Norrie and De Vries®. Leonard’ and Gelder® studied the linearized i
compressible flow problems by finite element methods. 0lson? and Bakerl?
have developed some finite element method algorithms for viscous incom-
pressible flow, primarily for environmental studies. The unsteady
incompressible flow around an oscillating body was investigated by i

Bratanow, Ecer, and Kobiskel!l. (Chan and Brashears!? applied the finite

element to the analysis of time-dependent transonic flow around a

symmetric airfoil executing harmonic motion. Some initial results of
Thompson's13 in the application of the finite element method to the
flow through a cascade of airfoils have been encouraging. Even though

the case he studied was only for an inviscid and incompressible ideal

fluid, the extension to the cases of compressible, viscous fluids is




very promising. More recently, Hirsch and Warzeel4 obtained the
solution of the meridional through-flow in an axial-flow machine
using the finite element method, and the solution of transonic

flow over an airfoil based on the finite element method was reported
by Chung and HookslS. They also proved that not only the results are
satisfactory, but also the method is simpler and more versatile than

other methods existing today.

The present work is concerned with steady, inviscid, incompressible,
two-dimensional flow through a cascade of blades. And, the main objec-
tive is primarily the development of computer codes for model formulation
and solution using the finite element method. All codes developed here
are as general as possible, so that they may be used to solve more
sophisticated models in the near future with as little modification as
possible. The attractiveness of the finite element method for computing
the flow through turbomachines is its capability of modeling three-
dimensional viscous and compressible flows. A detailed description of
the mathematical formulation and the solution of the method are pre-

sented in the following chapters. The results are in good agreement with

experimental and analytic data in the open literature.




CHAPTER 11
MATHEMATICAL MODEL FORMULATION

Although the case of this thesis is the simplest case, two-dimen-
sional, inviscid, and incompressible flow; the simulation of the realistic,
three-dimensional, transonic flow of viscous, compressible, and heat-con-
ducting fluids is our overall objective. Therefore, the model formulated
is intended to be general and feasible for modification to treat models
of higher levels of sophistication in the future. For three-dimensional
turbomachinery flow of a viscous, compressible and heat-conducting fluid,
the generalized governing differential equations in tensor notation are:

continuity equation

P,+([)V;),‘; =o0 (1)

)

momentum equation

q)f+l&%/j=ei/P+‘:i v

energy equation

P(E»z+ )— P M (KT‘))~ UL (3)

equation of state

(2)

P == pRT 4)
E=fc,dT (s)

where

/t;j = (-x 3,11) I'S;i ,j




and definitions of notations are given in the nomenclature.

The above set of five equations may be solved for the five unknowns
Vi, P,p, T and E. For a more general case, the state equations determin-
ing the functions Cv, A, K, and U of the thermodynamic properties should

be added.

In order to simplify the governing differential equations, the
assumptions made are time-independency, two-dimensionality, constant
density, zero viscosity and zero body force. The simplified governing
equations become:
continuity equation:

(6)

The momentum equation is satisfied, if the stream function is assumed to
satisfy the irrotationality condition. If the stream function, ¢ , or
velocity potential, ¢ , formulation is used, the following relations

are defined:

a2 Y
AX Ay

= -
¥X

L
Y

By a simple substitution, the governing equation in terms of either the
stream function ($¥) or the velocity potential (¢) may be written in the

form of LaPlace's equation:




(8)

where the first equation is resulted from the continuity equation and the

second equation was derived from the irrotationality condition. In tensor

notation, they are:

¢:u= o
(9)
Wee= 0

In general, the choice between velocity potential and stream func-
tion in the finite element formulation depends on boundary conditions,
whichever is easier to specify, as well as on the accuracy of the
solution. Although the stream function formulation is presented in detail
to describe the solution procedure, the potential flow formulation has

been studeid as well.

To impose the proper boundary conditions is very important during
the procedures of solution. The stream function gives rise to Dirichlet
type boundary condition, i.e., the value of the stream function is spec-
ified constant along a solid boundary. For the periodicity of flow

properties in the cascade flow problem, the stream function value can be

taken into account simply by specifying the upper and lower boundaries
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with different constants, and the difference between these two constants
should be the same for all passages. The velocity potential formulation,
however leads to Neumann type boundary conditions, i.e., the derivative
of the potential normal to a boundary must be specified. Since the

normal component of the derivative of ¢ is zero along a solid surface
boundary. The solution of the velocity potential using the Finite Element
Method satisfies these boundary conditions (so called natural boundary
conditions) automatically. At the entrance and exit of the flowfield,

the values of the velocity potential are specified, the gradients of the
stream function are not necessary, however, because they are natural

boundary condition. One may refer to Thompson's work!3 for details.




CHAPTER III

FINITE ELEMENT SOLUTION

As mentioned previously, the finite element method is chosen not
only because it is simple, general, efficient, and capable of handling
models of higher levels of sophistication; but also because its suit-

ability for highly irregular boundaries of turbomachinery flows as well

as being capable of simulating three-dimensional solution procedure. The
finite element method is a systematic procedure through which a continuous
funciton is approximated by a discrete model consisting of a set of

values of the given function at a finite number of points in its domain

together with piecewise approximations of the function over a finite

number of sub-domains, called 'finite elements'. The local approximation
of the function over each finite element is uniquely defined in terms of
the discrete values of the function at the finite number of preselected ;

points (nodal points) in its domain.

The general approach of finite element solution is outlined below as
applied to the Laplace euqation of the present study. First of all, the
entire flowfield (to be referred to as the global system) is divided into
a set of finite element subdomains (to be referred to as the local element
system). There is a wide variety of finite element types from which to
choose. They vary in shape, in the order of polynomial used for inter-

polating functions are developed. For a two-dimensional element, the

11
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accuracy in the form of element norm is determined by:

A P+1
Do -D o]l € c-h—y
P

P+ (40)

Mpo, = 1D ¥ I

where: | and ﬁ respectively are exact and approximate finite element
solutions of the problem respectively,
O™ is mth order partial differential operator
lAlmeans the energy norm of A,
C i1s a positive constant,
h is the longest dimension,
p is the largest diameter of a circle inscribed in the element
considered (see figure 10),
m is the order of the differential equation,
p is the degree of the approximating polynomial or the inter-
polation function of an element.
We see clearly that both the size (h) and the shape (p) are important
to the accuracy of the approximate solution. Besides, the local gradient
of the solution has to be considered in the final selection of the finite
element mesh system in order to obtain accurate results throughout the
entire domain. It is also obvious that more accurate solutions may be
obtained by using higher degree approximating polynominals within each

element without changing the element mesh system. The use of a high order

-
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polynomial is thought to improve accuracy sufficiently to sacrifice the

increased programming and computing effort. Therefore, an optimum
condition of the degree of interpolation functions and the finite element
shape/size arrangement may exist to render the best possible computing
efficiency. Four different finite systems of various sizes, which are
shown in figures 1-4, have been studied for investigating the effect of

size.

Once a finite element system is selected, take figure 1 for example,
the stream function ¢ in equation (9) is approximate within a finite

element by

Yixy) =Qouyrd, (11)

with n=1,2,..., r (r=total number of nodes in the element considered),
fn (x,y) are interpolation functions, Y, are values of ¥ at nodal points
of the element so that the yp's are not functions of spatial coordinates

of the element. In the present study, the quadrilateral isoparametric

elements are used to approximate the solution over an element. The
element mesh system is chosen according to the anticipated flowfield
property variation as well as the geometry of the boundary. Therefore,

the stream function Y within a finite element can be written by

W axy) =02, 9, + ¥, + ), + Rond, (12)

Further details concerning the interpolation function are presented in

appendix B.
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The next step is to establish a functional of the boundary value
problem based on the variational method after the Rayleigh-Ritz or Weighted
Residuals Method. An approximate solution of the problem is obtained by
extremizing this functional. These two methods, namely, the Rayleigh-
Ritz's and the Galerkin's, have been found very suitable for the finite
element analysis of fluid flow problems. Here, the finite element
equation of the two-dimensional cascade potential flow based on Galerkin's

method is derived
A ¢ =F (13)
nm w n

The details of the derivation using Galerkin's Method is presented in the
appendix A. It should be noted that the summation convention is used
for all repeated indices. Equation (13) is called a local element equation
defined in each finite element subdomain where n & m are element nodal
numbers. The coefficients Anm’ and Fn are evaluated, in the local
coordinate system, using the isoparametric formulation. One should note
that since the integration is performed in the local coordinate system,
the Jacobian of the coordinate transformation is involved when the local
element equations are assembled into the global system in the original
physical domain. The integration may be carried out analytically or
numerically. The computer program for evaluating these integrals using
Gaussian quadrature has been developed. Experience has shown that four
point Gaussian quadrature yields sufficiently accurate results. The
computer program using the MATHLAB (a Symbolic Computing Language) for

this purpose has also been developed.
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Having evaluated the coefficients of Anm and F, for all elements,
we can assemble all the element equations into a set of global equations

in the following form:

A W =F, (44)

where: E N
n w)
I A .
A‘l e=1 ‘-A””‘ 3
E " e
F == a F
4 e=1 hd

and the incidence symbol A? is defined to be either one or zero depending
on whether or not the local element nodal number n coincides with the
global nodal number i. Here, e indicates the element number, E equals

the total number of elements, and i and j designate the nodal numbers of
the global system to distinguish from n and m, the nodal numbers of the
local element system. One should note that the summation is done over all
finite elements, however, only elements directly around the global node
will have a contribution. Therefore, the coefficient matrix of the

global equation is usually a banded matrix. The computer program

developed is able to assemble all element equations automatically.

In a boundary value problem, the most important step of the solution
procedure is probably the introduction of the proper boundary conditions
needed for the case of Laplace's Equation are of the Dirichlet type,i.e.,

the boundary conditions are specified constant along a solid boundary
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surface and flow velocities (Neumann type boundary conditions as far as
the stream function is concerned) are assumed normal to the entrance and
exit of the flowfield (Figure 5). Since the property of the "natural
boundary conditions" appears in the variational principle of a boundary
value problem, the unspecified Dirichlet type boundary conditions at

the entrance and exit will adopt this property and yield the correct
values automatically. The periodicity of flow properties in the cascade
flow problem can be taken into account simply by specifyving the upper

and lower boundaries with different constants, and the difference between
these two constants representing the mass flux of the passage and is
maintained the same for all other passages. On the other hand, in the
velocity potential formulation, the boundary conditions are specified only
at the entrance and exit, and no boundary condition is required along

the solid surfaces where the solution will adopt the concept of natural
boundary conditions. In general, the application of variational methods
including the finite element method to solve a two dimensional flow with
boundary conditions involving non-zero normal velocity in a stream

function, a line integral along the boundary is required.

The boundary conditions may be discretized in written in the form of,

?r;\‘u,{, - - (15)
with r = 1,2,...,R (R = the total number of boundary conditions);i = 1,
2,..., N (N = the total number of the global generalized coordinates or

total number of global nodes ), Two of the commonly used methods, Lagrange

Multiplier Method and Modified Boundary Matrix Method, have been found
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useful for imposing the boundary conditions. The Modified Boundary Matrix
Method has been found easier to use, and results a final set of global

equations of smaller size.

The next step is the solution of the final set of global finite
element equations with the boundary condition imposed. Using the
subroutine SIMQ, in the scientific subroutine package, values of the
stream function at every unknown nodal points have been obtained. One
may, if needed, compute the value of the stream function at any point in
the flowfield using interpolation functions. The velocity distri-
bution of the flowfield, the pressure coefficient on the surface of
blade, and streamline distribution in the field may also be calculated
trom the results of the stream function. Computer codes for both

evaluating and plotting the pressure and velocity vector have been

developed.




CHAPTER 1V

RESULTS

The flow phenomena studied in this project is a two-dimensional,
steady, inviscid and incompressible flow through a cascade of blades.
The computer codes for model formulation and solution using the finite
element method have been developed. All codes (main, subroutines, and
funcitons) are designed in the general form, so that they can be utilized
for the simulation of more complex phenomenon in the future. All the
computations were performed at the Computer Center of the University
of Mississippi using the DEC-10 computer. The flow charts and

description of the main program and subroutines are presented in Appendix

D.

Using the stream function formulation of potential flow, the
Dirichlet type boundary conditions along the solid surface are specified.
The periodicity of flow properties in the cascade flow problem in terms
of the stream function can be taken into account simply by specifying
a common difference in values of stream functions on the upper and lower
boundaries of each flow passage. In the case of the Laplace equation in
terms of the velocity potential, the values of the velocity potential
at the entrance and the exit are specified and values of velocity

potentials for the rest boundaries can be automatically evaluated

18




by the FEM, a variational approach.

Applying the program developed to the case of a cascade of ovals
in potential flow, produce a result comparable to that of the Thompson's.
The values of the stream function at any point in the entire flowfield
can be evaluated by this computer program either as direct solutions
of the global equations or results of interpolation functions. Thus,
streamlines in the entire flowfield can easily be plotted (Figure 5) with
a CALCOMP plotter. The pressure distribution on the surface of blades
is shown in figure 7. As expected, the speed on the front half of
the pressure surface of the blade is nearly a constant, and accelerating
for the rear part of the blade. In figure 10, the magnitude and direction
of the velocity vector at every nodal point in the field are plotted.
The velocity gradients in the blade-to-blade direction at the entrance
is approximately zero and a certain constant respectively. The results
obtained by the finite element solution are in good agreement with

experimental, analytic, and other approximate solutions published.

Figure 9 shows that higher accuracy can be obtained by using
more elements and/or smaller elements. By testing different parts of
the program, it was found that most of the computing time is used during
the assembding process of the coefficients of the global equations from
the coefficients of the local element equations. In order to store

this incidence matrix, it requires a large number of computer memory

locations and also takes a lot of computing time to search for the




coincidence between the local nodal number and the global nodal number.

A plot of the amount of computing time required to solve the entire

problem against the number of elements used to approximate the problem

is given in figure 8. By examining these curves, it is found that the
computing time is clearly proportional to the cubic power of the

number of elements used for the case of assembling by incidence matrix.
Applying the improved assembling technique (see Appendix C for details),
the computing time required for solving a typical case has been reduced

by a factor of six.




CHAPTER V

CONCLUSIONS

A finite element model of the steady, two-dimensional, potential,
cascade flow has been established. Numerical results for various cases
have been generated using a Fortran IV Computer Code/including several
subroutines, functions, as well as a main program. Results of typical
cases, such as ones plotted in figures 5, 6 and 7, conform well with
the potential cascade solutions. By examining the velocity vector
plot (figure 9), one can see that the magnitude of the velocity
increases where the cross-seciton area of the flow path decreases and
vice versa. The direction of the velocity at every node on the pressure
and suction surfaces has been calculated and found tangent to the blade
surface. It further shows the flowfield obtained from the finite

element model is physically sound.

To further verify the correctness of the Finite Element Sclution,
the normalized static pressure distribution along the pressure and
suction surfaces of the cascade flow is reduced from the stream function
colution and plotted in Figure 12 to compare with the Delancy'sl6
result based on the highly sophisticated finite difference made as
well as some experimental data of the same cascade configuration
provided in Delancy's dissertation. The deviation between the finite

element solutions and Delancy's result is primarily due to the difference
P
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in the basic model assumptions. The present model is based

on the incompressible fluid assumption; whereas Delancy's model was
based on a subsonic compressible flow assumption. The primary reason
for comparing with Delancy's results is the fact that his cascade
geometry is adopted for the present study. In the same figure, one
can also see the fact that the pressure distribution reduced from

the velocity potential solution is in better agreement with Delancy's

results than that from the stream function solution. It is generally

22

true that the velocity potential solution is more accurate than the stream

function solution. However, the stream function formulation is more con-

venient in specifying the boundary conditions. During the present study

the thin trailing edge of the airfoils if used, so that the Kutta condi-

L

tion at the trailing edges is not needed. It has been observed numerically

that a slight increase in trailing edge thickness results a large change
in flowfield properties, especially the static pressure distribution.
This observation demonstrates the importance of satisfying the Kutta

condition at the trailing edges.

It should be emphasized again that the primary objective of the
present study is to develop a general computer code based on the finite
element method for solving the two-dimensional cascade flows. The
potential flow model is chosen to serve as a test case for verification
purposes. Based on the aforementioned results, it is obvious that the

computer code is satisfactory and can generate reasonable flowfield

characteristics from a realtively simple element system. Some effort




23

has been devoted in improving the efficiency of the finite element model.
Although an analytic way to determine the optimum configuration (size-shape)
of the finite element system for obtaining a reasonably accurate result at
least computing cost has not yet been established; the relation between
computing time and number of elements has been established based on the

computer experimentation of several different finite-element system

configurations shown in figure 1-4. It is seen in figure 8 that the
computing time is approximately proportional to the cubic power of the
total number of elements used to discretize the flowfield. Using this
curve one can, at least, estimate how much more he has to pay for the
better accuracy he gets by increasing the number (reducing the size) of
elements. In the same figure, one also sees that the computing time
required to calculate the flowfield using a special assembling technique
for obtaining the global equation is considerably reduced. Although this
special (or improved) assembling technique is not as general as the
incidence matrix scheme; it is definitely more attractive for developing
1 production program. The basic concept of this special assembling
technique is briefly described in Appendix C, and the details of the

scheme is in the computer program.

One should also note that almost all subroutines and functions
developed from the present study are in a form as general as possible, in

order that they can be used in the future to simulate cascade flows of

higher level sophistication with little or no modification.
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It is generally agreed to the fact that the computing time for
simulating a typical boundary value problem with moderately irregular
boundary geometry by the finite difference and finite element methods are
comparable at the present state-of-the-art. In view of the fact that
the finite difference schemes have been in existance much longer and
thus have much more refinements built in to them than that of the
finite element method, which is still in its infant stage, as far as
flowfield analysis is concerned. It is quite clear that the finite
element modeling of the cascade flow is more promising in the future,

because there is plenty of room for refinement.




CHAPTER VI

RECOMMENDATION

It is quite obvious that the realistic turbomachinery flow is a
three-dimensional, unsteady, non-uniform, and turbulent flow of a viscous,
compressible, and heat-conducting fluid with additional complications of
boundary layer separation, cavitation and even shock wave interactions
for some cases. Although the computer program developed from the
present study is for the simplest case, the two-dimensional, potential
cascade flow; some basic subroutines are directly applicable to more
general and sophisticated models as well, and some other subroutines
require only minor modifications. With this basic and quite general
computer code in hand, one shouldn't have to much difficulty to attack

the cascade flows of higher level sophistication.

Due to fact of small flow passage, the viscous effects should be
considered. An incompressible and viscous model for the cascade flow
may be a logical extention of the present study. The comparison of the
proposed model with the inviscid model will provide a better understand-
ing of the viscous effects in the two-dimensional, low speed, cascade

flow.

The next model of interest may very well be the three-dimensional,

viscous, and incompressible flow in an axial-flow turbomachine. From

25
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this investigation, the effects of secondary motions may be explored.

Since the finite element models of two-dimensional and three-dimensional
cases are not that much different, which is not the case for the finite
difference schemes; the study of three-dimensional case should be completed

in a short period time.

In addition to the above two models proposed, one can increase the
model complexity one step at a time in a systematic manner. Finally,

the truly realistic phenomena may, one day, be simulated satisfactorily.




Figure 1. Finite Element System (72 elements)




Figure 2.

Finite Element System

(90 elements)




Figure 3. Finite Element System (108 elements)







Figure 5. Boundary Conditions for Stream Function
Formulation




Figure 6.

Streamlines of the Entire Flowfield
(144 elements)
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Figure 11. Determination of Size and Shape of an Element
h is the longest dimention and p is the largest
diameter of a circle can be inscribed




Figure 12. Quadrilateral Isoparametric Element
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APPENDIX A
DERIVATION OF LOCAL FINITE ELEMENT EQUATIONS

The potential flow through a cascade of blades of turbomachines can
be governed by the Laplace equation, in terms of the stream function U
below:

y.. = o {img & 2) (A-1)

1¢4<
Following the concept of the finite element method, this equation is
assumed applicable to each element (a subdomain) of a selected finite
element system for the boundary value problem considered, and the
stream function, |, within each element is approximated by an inter-

polation function, such as:

V=2ny, (n=1,2,--- N) (A-2)

where 0 (x,y) 1s generally referred to as interpolation functions,

is the value of the stream function at a node numbered 'n' of the

“n
element, and N is the total number of nodes for the element. One should
note that the summation convention has been implied in all equations
with repeated indices, unless indicated otherwise. According to the

Method of Weighted Residuals, a residual for each element may be

defined and minimized in the following:
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(A-3)

(R}ﬂn)':j "L,/“'-fzndA =0 (A-ﬂ_)

Applying the Green-Gauss theorem, equation (A-4) is converted 1nto,

55 Y, N ,ds -Le Y, ; Ry, dA =0 (A-S)
where S is a portion of the boundary where the Neumann boundary condition
is prescribed. Substituting the interpolating functions, given in
(A-2), into (A-5), one obtains the Local Finite Element Equations

below:

A Y =F (A-6)

where: Anm =S jzn < ﬂm : dA <A-‘7)
Ae ) J




APPENDIX B
THE INTERPOLATION FUNCTION FOR
QRADRILATERAL ISOPARAMETRIC ELEMENT SYSTEM

Consider an arbitrarily shaped quadrilateral element as shown in
Fig. 11. The isoparametric coordinates ¥ and p whose values range from
0 to © 1 are established at the centroid of the element. The reference
cartesian coordinates X and Y and the variable u over the element are
related to E) and n by:
‘/ CX2 4% (§ JQ ) <£;-Ef)
w = dgF (5,7) (8-3)

lake equation (B-3) for example, one may derive the interpolation func-

tions as following:

u ozi-&@,?)

o f 50000 .00 apfis 23+ o £es, )
[%(.’w'[)”%? <B-4’)




Using the four conditions at four corner nodes of the element, one

can determine the values of four arbitrary constants{dq},

U = o0 F 50055 00+ oyhies. ) e a5, 2

Y = Q’,‘f': (5.7, + %'Fz(51‘7i) *%’g (3.7 q‘-{-(;{' %)

(B-&)
U = oL (5,00 + kGt )+ (5 gy mihocs )
U = ‘Yf{(;ﬁ,'&) +o(£1£(§,,7¢) * %'E (3,7 *'D(«.?g— (Se,7)
C r u‘. N - _E(g&’?‘,) 'ﬁ(g;'?‘.) {;(g‘.'lz‘_) ‘&(g‘;l?‘_) 1 r o(l ~
uJ’ .ﬁaj/ 7i ) ‘F2(§1)71 ) ﬁ (gil 71) .f“(‘;i" 73 ) “z
= (B-6)

e 'ﬁ(gcu’[&) {LQA,'Zt) .FSQK'?‘) '\Cu(;!,’z‘) O(s
4| | famw 510 wc.(z,,z,)J K

or simple

fud =[Fugl{o} (uv=cjre) (8-6)

[FMB ] 2['c2(§u:7ﬂ>_]

from equation (B-6), one can solve for {aq}‘

fogd = [ Fui]_ii“M} (8-7)

Substituting (B-7) into (B-4), it yields,

U = [ 'F2<5,7)“F“2]-1§u~} (8-8)
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which is the general interpolation function of u.




APPENDIX C

BRIEF DESCRIPTION OF AN IMPROVED ASSEMBLING METHOD

To assemble the local finite element equation, one at each node of
cvery element, into a global set of equations, the most straight forward
way to do it is the so called Incidence Matrix Method. This scheme has
been described in Chapter III. A disadvantage of this scheme is its
requirement of a large amount of computer storage space to store a quite
large incidence matrix (or symbol). Because of this, a lot of valuable
computing time are needed to search for the coincidence between a local
node of an element to a global node, and thus, makes this scheme not
very practical especially for a computer without a very large memory.

In view of this fact, an improved assembling method has been developed.

The basic idea of this new method is very simple. By carefully
selecting the order of the global node number, the element number and the
local element node number, the algebraic relationship among these three

numbers can be established, such as:

IJ = F(NC,NR,NE,I) (C-1)

where IJ is the global node numbers for nodes conected to node I, NC,
NR and NE are column number, row number of global nodes and element number

respectively. One should note that this equation is written in a general
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form for illustration of the basic idea. The detailed relations are

built into the computer program listed in Appendix D. During the
assembling process, the computer goes through the global nodes, one at
a time, according to their order. At each global node, there is a

global equation such as

A, 0. = F, €-2)

wvhere wj are values of stream function at node j, Ajj are coefficients
evaluated between node 1 and node j's, and Fi is a known value at node i.
In general, j may vary from 1 to NT (the total number of global nodes),
so that Aij's are usually evaluated NT times for each i using the

general assmebling scheme such as the incidence matrix method. As
mentioned previously, the coefficient matrix Aij of the global equations
is usually a band matrix due to the fact that only those j nodes

directly connected to i node in a finite element (subdomain) affects node
1, and thus, the corresponding A's are non-zero. The improved assembling
method developed from the present study, determines which Aij is non-

zero, and then, this non-zero Aij 1s assembled by the main program;

Computing time is greatly saved as witnessed in Figure 8.
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APPENDIX D

FLOW CHART OF COMPUTER PROGRAM

MAIN PROGRAM

read L, N1, N2, NK,
and X(NN), Y(NN), PSI(B)

\

evaluate coefficient of
interpolation function
and its derivatives w.r.t.
£ n, respectively

Y

-

17 - o R o \
J =1,2....,\WN
Ll = %,2,000 5k /

|

evaluate output, K1, K2

call subroutine DETMIN

output = 0 yes

no

evaluate elements of
JACOBIN and its inverse
call subroutine JOE

l

il




.

evaluate coefficient
of element equation
according to K1, K2
call subroutine COE

1

set up the integral equation
in terms of ¢ and n.

function CNM ‘

r

evaluate A(N,M) corresponding
to the global nodal number

I and J

Call subroutine GAUSS

sum up GJ (I,J)

no

no

no

impose the boundary value
of PSI(B) and simplify the
global matrix

call subroutine MXRD

f




Y

solve the simplified matrix
equations to obtain PSI (NN)

call subroutine SIMQ
call subroutine MXEL

Y

Iprint PSI(NN)

!

stop




000 OI QTHSTNNNA XJ00 WoeLd
ETVOTIOVEL AL1TVAD 1STE ST IOV SIHI

54

LT AONVHgVEE ANV HOLOAA=N ULl MOLOAA=(T=N) 49¥¥inNd ¢ 13X AnIinuxdns
NOIT AN AdYALN0UA
3dAL LATHOIAHIA AnN ONTISOAWI dZedV a0lddA=(len) dAuY Y14 ,¥n
(T=w)#(Ten) ULnI AuLIoFA=n UNY XTIV y#t Joragdy ¢ UMNX ' dullauddns
dnyldy "4nk
«UMUVIID NYISSHVO ONISIH A9 Wud NOTLYOA HLVHOALNL ¢ 1SSNVD AnNILnOHuns
SALYNTTu0O0UD D10 Iw
«ydVdUSI 49 SWHAL NI NOILuno3d TvHYH4LMI 4L dn 145 : ‘) HUTLONNA
SAATLYATaAU SI1 d070xY 201l odnd *ouToLVind
addALnT 40 $10104A0dd IHI 40 SLHALID[44%0D AL LYINITY0 8 Tho EnTloavdas
NVIHOOYE 40 SHTHLNE AHL AU SLUFIDIAAZOD Hnl HaVinoTed 8 0 ANILNOT4ns
SALYNIUYOCD OTHLAYVAVAUST *J1°4°" SAMLIVALAAG 9T JilY qwuldiung
MUITLYLTUdHALHNT AHL 40 SLUATOTAd400 4L AaLvoiYas H Dar Al Luddny
At I¥ann AdvAanuY
1SAHYYT AKL 0L d3v ‘N TVao’ Xd?anuod LSA7UVes JdI uMa W1 3y (TIT]
NN A2 TYAUN OF 1 a3uwt!n Tygaut Wudg o1 o097 SHLYRTX ) A%
( AlsDu=s ) Sda0 it oy oy 'y s HN%
C ¢H#1u= ) g3qQul AL a?Hipst 3 4N
Ay T tdd
AdAL LATKIIHILIT AWL Yo L oaddwilt (MY ags LV N E1ag0o AvanLui s s(I1)19d
AAVOL U SAdXL LAMHITalua 4y o0 dAsien:, 1760, sLTIT YL

LuvrvoeovcocoeuooLooe

1 44U 40 Alv pngnudek (4)A

1 A4t dU 4L 1 Mdnyd=Y s(1)x

IHVainnd 44dATL IV dHL #00 Sddu! e aHdd ' s NN
KAV GO AdAL LATHILaT10 Fnt ‘g SAuut 40 M4e 0y 80 N
QIlNIfg ‘IVUNg IVIOTIMHEA Au diid ' ¢ 2u

QLU ING AVUDN VU ZIHOH do AR G H In

SIEAWALT A &9 an . 1

RREERFRERARERARERRREDRPRFREBRIRARARPRR RS IR ARREFRAFP IR AR EIRARRAB R AR R R xR
* % - %
* % NOTL?THd0d pOLLIindn’4dLS A STl bl TeT a4V 1 a0y * %
* 3% HY A TT PLI% TAdYI7YD “S0uMus #7074 YAN1SeTaTd uvd *%
* % %
RERFRARARERRREZAR LRI IR R AAARIREARIRRR LA AR AARARPFA P ARA AR AR AR AR AR R AR R

(SRR RSN CLSN PR CA TR L A A SH Tl S Sl S Sh S S S &) &




R

RE— ‘ e R e e —

== paa 01 CIHSTIENI X400 ro¥2

FIgYOLIOVEd ZLTTVAD 1524 ST ZDVd SIRL
wy
5 IM=11
(V*L4’X1)IVN4Nd  £0OF

(TI1)17d (€01Z)ay3y
(U ITI=TI
AL'T=11 0% NU

(GIGL'XT)IVWAaNd Zotl
(A T=TH°CT1'1)LT) (Zol’Z)avad
#x% SAAON MMONYNN Mud ©UNLLYNOT TVE0TL dN LdS 0L ##s J
AnN1IanD 0l
HAUNT LN n¢

INAIRLD2 TPz P?TIDS
(TIVRD?ZZ Y T2 =21 7% = 2411D) SSNNS TUV)
ANhs—,a-N:s— 199)300 TiIYD
(AP0 ZN 7T 222K N TR T1VIOP "TIYD
g€ NL 8D (°6 “07° LNdialj)Al
L IRAIOU 227 IR 2192 T 727 1) w3 da T1%D
TeYTeTq P Do
Pl 1INy
twm?i=r vl Du .
'v?e=l OF DU
(Za? 1A2%) 4" q4VI
(Z°24Z 1 Xx1)Iynd04 101
(AR 21=TCIdIA’(TIY) (TplYZiaydd
A==y ny
Ziow =Ny
(STu'XT)Ivildand ol
ANV e T (0017 ZINyAad
. L2290 nNOUM DD
VD) INMNGILY
; (S6)19d°(ue) 11 (62 ¢EID(56)y 7
1(GS6°G6)rH (696 ) 1°(%)H(Z*22)PA(BI2ICv)Ty 1
Sp)1A ) IS Csn IR (6 )X (2292 ) 12 (2 "$) 5 WGISKALTA

SHUTLY DA oAVAR T ShirdYlam. 18 4A°INS : GIS AnTanuMans
NIl Ty AN Hdke LTATHITHL G D yTu v AQ

ccece




N4

Auls

(E°9244 40X T1)Iywaly

(W2 T=TT17(11)19d) (LOZ’€)dL1MM
ANMLIIAND

(1T)HH=(T11) 194

IV £9 DO

S ELE RATIEN )

(ROP1LEG PN P9 T 4 Y AXE TAVD
{1 I=T1

(I3 1=l 4

A% T=8"1 19 0Q

{SH KR+ TN IH* Nov s TV
REe VLV 0y ewe

40011 L)
(2100 ((T=")% 0 uitegnit)+1do
L LETRE E AN § A

whiay=1 it Dd

ICIT RN B EPY6 1)

(RO TS AT 1 T QX T¥a

00z

€9

19

i1

0y




SSUUTURORPS TSR e

7T paa 0T CEHSTINNG XJ00 MOWr
LTIVOTIOVEL ALITVND 1SEE SI 3DV SIRL

(N4
NanLAd

ANNTINND 1
Ty /(T )IS%(TITA=(2*T)zZM
*$ /(T Aa=(1°TIZN
/LTI AN T IS T 7T AT
*v/(1)T1S=(1’I) 1™
Ca/z0) 1) s=(p ) )
IEVASREICEIE RS B
w *ps/1)1S=(2'1)m
LAt t TARS &)
Y*1=1 1 04
/141%1=4f=7 173 ¥VAVYy
/la? L1 1=7 1S YLVU
17121y HADILNE
'GrAasy nuNWNn)

(22102202 LB"5IN”* &

(V)L CE)Ie (229X (') 12ty 'y ) nNOTSONARTU
(221 % ) DHY InTrnoddis




0aa oy
TI9vo1 J3HST
: iy LoV XI Ty, - wmmw:m X400 wopyy
i wn MGSNQH;H
aN g
HdNl3d 09
*T=Lndinu
A=Z A LS
ANNILNDD 9¢
LS N4 02 1 (3R *oa® D )31
v'i=4 96 04
A=Tx» SS
ENTL R RACIe S 0s
§6 UL Dot CAIND 0T ¥ VAl
v’i=x 0§ Nu 0z
09 L Ny
‘N=r0ndLnu Ng
nE 0T, O L () 1
*B3°  *go® CEINY Cedt 0 CHE® (2ign Cpat 4 gut a0 Ceat o 341 0y
0f vl 0d .
ob e 19 (WIS 3
‘Ha* 1 *HO® iAo toa® 1 *apt (2IND oAt d Cvet e Cpd® g )di

[=(Z)nND=(T)nD
Tt (EINY=(Z)Y
[+Lv ) ay=(E Iy
M+ wHuy=(¥ )"
1 (TaT D@ qy=1'1=)Di;
(lel" )/ (T=T"1)=MN

I 4 NOWaNY

1Y HADILNY

() wOISKANTU

(LA ZI IR 1T D D) alnday ARTINOUYMOS




N R P S T - g —
Y L P T AN T I S N BT ST "

bad or Qmmlmuzg A
) 469 mosts
Hﬂﬂﬁﬁﬁ@qmmthQ<Ddeﬂmmmmd!&m~mk
(=]
n
UN.
NdNL3A
APNT LROD 3

Tl 0 adead

(M)PL=itd

Y1=0 & Ad

1=(b)vL

p+i=(g)veL

T+ladi=(2)0H0

T+41=(T)HL

(=)ol =]’ )ta=y

(i=1)=Tn+n=1

I=18T=i € Nd

=z St1= ¥ D

pAccry O tWnNY

1,070 L6 eI LY (g6 7 L) LAU wNISNANTU
ot b f g HL? L2 Ty 4304
(L3322 1 1) P amTaAd T anuians




60

FIaVO1I0VIg

UN4

NdNL3d
(Z1°72)3a%(g21V)d4=(22Z)a#(z2 1) 4=(4)y
(12122)A%(z ¢ ()d=(T272)7w (2 11)A=(€) Ty
(Z21°2)3» (12 1) 4=(22Z)A4= (11 *1)4=(2)9Y
(TT1Z)3A%C17¢ 1) 3=(T122)2=(1*1’1)d=(1)9d
Jun1LINDD

1a#Zy+(?2/P’1)A=(C’* 1) 4
PA#TV4(T/PT)A=(T'P1) 4

(“)X=14

b vl 7D

(W)YX=1d

R 10 (S R G GO 1 A b IR 1 |

(CARRFAL TA']

(L/A)TH=TY

Z 01 N9

(¢'%)iv=2v

(12%)1IM=Ty

Load B2 U1 1D iy A1

ITeInn(DDT0o+ (M) TO=N

yri=n ( Na

D=1

*Begi?r1a

Z'i=r 1 DA

Z'%1i=1 I Da

EiveiNeluY=T1

(1=TH) T RYeT1=gNY

(T=T)/7Ci=1T1)=1NV

Vi ol it S P e R R T

70T Y0y 13 MING

WPTI2ERN’ 1MV ZOT) dAHILNT

A9 H0VKOD

(At ot AR ekl € SR E € G -F Vo AS (4l A8 A B

S (H)AY I (B)IZO (VDT (GOIA (S )X (Zb)Zh(ZY)Tm (ISKTATY
(g 7n P X oY Sz (T B AaTepluddans

VAU 0L QFHS Tagng
b 1538 ST 3pygq STkz




—
O

]

dnNd
NdNLa3A

(V21" (V T )u=(6'S)4d
Pr(ET)ae (e )n* (% T)Ir=(s’4)A

AR(ZOT)NCL ()1

R CELT )Ml T2
LY L) el )y
MRy T )Re () 1)

®#(T21)%+(g[M)iw(2°T)%+(¢’L)

PRECEPTIN=(L 504
(b 'T)r=(9’6)4
(221 )p=(6"6)4
(v'P) ™
w(VIT)¥=(P'4)A
*(F’T)v=0€’6)H
#(Z'I)M=(¢’G)H
#(1T)2=(1'6)4

CZ'M)zn»lg?1)Zr=0g"4 )4
EACTATE A S G S 4 CAs B L
Ch i) g=wbh A Y=t o D d
(e ()L 0g 1 IVEN=(H"€E)H

8 el g 1)

#{1'3)Z =00 *€)4

Cl21) vl '1)zr=C(zZ*edd
Ci2oYinxly?1)Ze=0(1¢ Yd
GA AL G TR &5 E € A -
(221 1517l )4
C2lr)icEml ) Ypv=d 2 e )4
(TP ey “Idle=A8 g a4
Czi0) »xlz?t)gv=(0g 14
Co LR ) fpeCe P 1awll i) i=(2 ' 1)
(32 e slrti)am=Ci "5y

m.._ aci e MOoMONWN)

"ot ednw aNIsShAniy

(2’2 2P (v)Id2le GIHALZ B¢ (e "h )L
(iR Ed G

)30 INTLNuUMUNS




¢ T=3969106E919826£809°0 ! 0+3691808vB6EETLGLGI Y s
¢ 1=l 0BZ98920YE8LGLLS 0 g 0+3,G220F18EGL%RYTC 0 =
! Y= 14Z86LGUGETLZLES®O d O¥3LLeldby6l6EL0128L2°% 0 *
¢ I=dbbp9602GuHLEe088Y U ‘ O+34/ L8V32Y6S789v ¥ Ze "0 *
4 I=48E99L6499L080G660EV UV ! 0+3g 1 LLeh8LSOVZYNULE Y %
! O T=nHeGIO0PSG0LOPZELIGE"D ? O+24v 1662462660000 TH " U *
! 1=106481LLSVZ620P96C" U 4 0+7Z246002706€9LL07ebp 0 #*
! T=4E0660LB006TLBEIZL 0 4 0+738€99¢T009yLCLeTH9Y "0 »
¢ 1=¢fB99bb Teb6069C 100 i/ N+GL HGYGHOELLLYYS LAY O »
¢ 2=14866SEH6FHAVTINLTY0O! 0+9g90T14366609F0GLEL*0 / S

AN NRAE

/ T=d4S7HEGLLZG0EGCLY6"S

Ym0l LT ELAYGCO0GL Y P T=dbLTYPLZGLOLINELL " "N 19V ACALBESLLINENYT"®S
"= Z10GL696GZRLGYA"T0T6AETURZRAKRERUNOZL  ‘T=T1LE§82¢ClubbhbloLyL®S
10(BLZETLULCZIRERBOE ' T=AYE69Y9LLZYSBIETEZY " N A4ZSTOGLLIVOZLCOLLLE"S
1=t 6t OYZ LYBSSTOLGLY 04LBGIEE61LT09GT2E%  i=qubAt7eh9619LQLTIE"S
096291998 GLTGLBZELY ' T=dL 0L LHSOLACZHLSGE L Nl 6% Cq9hp Lyt 00 (LPRY S
CUNBELNLY9062ZSELSHZ L " T=TgCv b LGSCYOLYT979 040y L T6QluaZytLall®sS
4006066 VAP LSToEBT  '0AYARCESIGEE T LE8GI0L 047 vt e b L CYELT®S
Clm T IEL9ILLEYYTHE00 " 04 EZGTL60LEETGeb8E" ' 1=4G17hGYL06LA969EES"S
COAEYLEZGRINLOEGUZGE  I=4b 1 ASGLELT A9 yGEZ " 0 F a6t feT L TeinLUAY T US
PN R YL LSEZTIZOLLb 1 T=9G609G I 8UEYH9TLEYY L 042196/ YGIAGEEEYbL TS
‘004G 29t 90L69L699T2° 0 H70T66LGCTTEVSARUT UALT iIGHbIPNIDOLELE"S

e HEUBCSLSYLYSELVL P0HSZCOVPPEL ST EGLEL * ‘T= T 0pPe b T LYGEELE"S

(1 A98G GBS ePIZESHAEY 0 T660RIAEBILAETPELSL " T=AUAEZul 7 1Z8LILIB®S
CN4b 9 EHEBGZLEEGHOST U dLPPATRGAY0LAYL LA ‘0t L8Ny TCL VGUELTIE®S
COALEETRO0LHECEEEEt " ‘T=T0840ut16b1ayZ0T1906" ‘047 10Ul gt eR4LFYPELINONRE®0 S
CHALOELZIEVLLGCLUYZE VAL 1871V 2001724066691 °°04€098L53942¢VL26ELT®S
L d46C9¢NL6LSSTBASUEY *0IS°070TCRSZ L AVAGYET S 197 %/ S
1D YivVvd

[RcKe EF BETTYI ™ 9]

COLLYDBLET ICOY L LeEWIDBT LY CH Y C YU LT ORI ATHNSE

(Sl K e LR T 7 e A |

(BOTIVBIRISHY(BICNI(ZECICVL ()N (e5)To KtisnARI

8-y it o fASn GV B Kl ol e LR Gt AL SR B e i € S B I B T f Fab el i

‘

’




A . e W 5 e T N

L4
¥
¥

ATy

63

.- & & N

.- & & o

(//7,:3'191SS0d LON NOLEVHOILMI

I=4006€9€LG2YP0UL2HL"0
[=40EVLe90EV0YELTBLY U
=48 BL220p0V9h61L2Z690° U
1=42v618RLVEHEH985GY "0
1=3906T0Z¢049V0yZEEV U
T=A8LEt Lbe 11296456910 v
1=9eGISeGEh3LYEIEVFE U
1=38 4¢PV SULLRLLIOE D
T=46Z608Tut TIT1T62Zt "0
1= 4y LLLYZLEL9p0CheE o
T=488088TIF96LNLEYGL U
1=40pe€4 Vb lunvatiplcty
T=ALIL0LGYSH TepYELiIL 0
T=3080Te9y499280969Z1°v
Z=UGERLSYSYELhTLETR D
=3t 8V0SE LV V0G0 H0GE Y

L= I8 LU9LEL (4L6063689°0
Tedgb i ibe L3l ln?yty

L N N

-

Q+ABLOYV LV Zone Rl vsnt 0/

MdnLAy

Aot (S06’€)4Ll1dm

HONLINUD

10§ NL 1o ((HIOXROA*XON) AL
B1= 00S 0Oq

—lX??#QZ"EE

('1)siN=dn

AnNITNOD

Negnydd

Yol (soe’€)3dL1u

1 18T = HALANVHYA DNITIVD 04 )LVWAild

AURIINDD

10v O U9 ((TIDN°OA°XDN) 4]

§T1=1 00v Uu
JLLARGALE2SZ IS L 2R ]IS S
YyeetyZtal o tontelp e /oN S
1=35Gley0ttyZe gt Gl=e*: *
T=4UGCROEIELOYHSELTL"!
U+apGHoualT 199yfvgeuli v
+7¢3¢e0ulplivgtensnl”
N+3L9L1EGY0E9GLA0TC"
OYquLY T 199V vSe6vPe Gl v
O+39T12¢NLC948L6LuREAC U
D+309,0169%e€122G61€8°0
D+AYILLLOLEoSUTBNYOE "1
D+R07 1 LeS86LAsTVTLAE U
N+3A0A%4ZAYRIIPEHOP7E 0
04390970 y8LLSOyTeby v
D+ 569409nLfUESELIP Y
0+74¢7¢SLfolLLZITIrFCy O
D43 Tp€9ZLLSGLSLAY U

- -

L~

R R E E T

£ YLYQ

»

T=e TRZ0ELfrat* n7u07e "0

1=F06Gi2089¢LftE 565G 0 *

nos

To¥

S06
noy



64

N4

RE-TANRC P |

TuhroaXd=nyiy

TTIAO0D

(X4 0L ) #Lum LI+ )O0+IYAI=TYAY
AUNIL0D

(AN XV U VIAI+ (A TRV ) 4DI R 1+ 4I004CRI=SCZAD
COAACEN udv) 4D+ (AN XV Uau) 4D * (T +N)HO+ I XO=1AD
Aun(A)ot=ky

Z2'3a"gusy popY OO

VI A 58)

ol ¢ &)

YilaYVZyiYy

X(+¥y= 1dy

L9=n (1) uh=Xy

i taNsEr o2 wd

MA= J=hy

(1 F+nA)aG*C=Ay

*0="TvAD

MX=;1¥Y=Xy

(i¥+x)=G°0=Xy

o d M ntd =4,

(1) Sr=d;

AP LAy

mqmduawnquwwuq<zoammmmmMu<mmumh

002

0ot

TG

Y I Tnn RWOATH




r——

65

Und
MANLT A4
AR (E 447 44 1 d) =)
(7R ? Ns
A7 LTI TR (g YY) aeSa (725 )4 (1 94 ) ) =€ 4
TAA LTl L Bl ey
FZATLART LT #(CanCwlp g ) g4 yn (280 vmlefy )y
FOPE)APSH R (V20845 R (g 72)a+SH(797) 4 (1 *¢)d)=74
(¢*%T17113
AL ITSURPEAPA T RTAFEND LT YEAR SETAE KRS IS T
AHZCARLZ TP AS (124240 P 40 s2Zir 4
AU/ (AR (72T 3Pa+(T92%T yPa)e=2 1104
A7 CSRLZ A TIZIPAML T I 2 IP V=2l Z 1P
A7 (SR ¢’2)IP 40 5%27¢)L4)=1110 4
ARCR (Y IutAn(F ) " +T2 () s (1) T=9u
PROCTY L OPRDD
CESIA LR T (2T "7 ) i SNANT A
(7T e w4 N0




66

Yldlue¥

anNsd

NdnL3d

ENLE R A gle}

AANIINOD

(N1 V=s(i=0'i=1)Y

S 681 05

(p*Ti¥=(pli=1)n

B B O (Vs °Hd° 94X

v ul NY (dw ..FU. —Juv.mh

Wel=sf ¢ 04

T 1ode( i DIVve(1)34=(T1=1)98

9 01 N

ANy LN

(AT 3= =10y

Z Qg 0H

(r'1)u=0r’1) v

AR R SR T AR G O T |

AT e A B (L A |

l=p 7 Na

(T LCazC ), “1)v=(T)udy=(TI)du

g il 20 (s ®03° 14l

£ g i (Ne 235 T4y

‘il 9 W

(1=1)=1T=.y

(1=1)=1y=1

ST adAvHELYT

GREREE I T FICHT ) b

(2°C°2) 3% (p)a’(f?8) (1) IRd (GH) U (wF 360y wilONTRTY
(=i )% (T=") N4 XTdAVs Pr#d! S4ddds FUTL (04868 Siwd
{ PN 1S4”7" " T L . Wt AnlEiudans




S

uvy

HNLIA

AN TIROD
(TX)Ty=LT)8H

T+ ani?2li=l 6 Ou
(iTs18d=8iT) TN
AN LIt
(1)3u=(1+T)TH

9 L NY
(I)G4u=(T) Ty

£ Ul MY LT *M9® 1Al
ﬁ@l#v#.h:li.;-ﬁﬂq g

I -2 L} MU WD

(46)Tu?(2°Z2°2)P4°(¥)F(6°6) 1°(S0)HA(1)19d WN1SHA«TYU

(1+¥NaNN )2 ([ +NNe ")

UL Y1 44w

(MNe )R (=) Sitav
RO & ol S RS R § |

(

Y
)

YivaVw
AL InnAaps CINL
174 FJulinuHyns

\pind k400 80N
g 51 70v4 STRY

o




68

BIOGRAPHICAL SKETCH OF THE AUTHOR

Tsu-Yi Su was born in Taipei, Taiwan, Republic of China, on Sep-

tember 2,1951, the son of Wei-Tsean and Tze-Ching Su.

After graduating from the High School of National Taiwan Normal
University, in 1970, he entered the Tatung Institute of Technology
from which he received the degree of Bachelor of Science in Mechanical

Engineering in 1974,

From 1974 to 1975 he was employed by Sinotech Engineering consul-

tants Inc. as a junior engineer.

From 1975 to 1978 he has taken graduate courses toward the Master
of Science degree in Mechanical Engineering at the University of Miss-
issippi. He worked for the University of Mississippi since 1975 as

a graduate research assistant.

Permanent Address; 97-7 Yunho Street, Taipei, Taiwan, R.0.C.




ABSTRACT

COMPUTER SIMULATION OF TWO-DIMENSIONAL CASCADE FLOWS OF IDEAL FLUIDS

SU,TSU-YI B.S., Tatung Institute of Technology, 1974.
M.S., University of Mississippi, 1978.
Thesis Directed by Dr. Shu-Yi Wang, Associate Professor of
Mechanical Engineering.

The steady two-dimensional flcw of an inviscid and incompressible
fluid is simulated by the digital comnuter using the finite element
method. The finite element method is chosen not only because it is
simple and general, but also because it is extremely suitable for the
complex geometry of the flow environment. The computer program deve-
loped for the simulation contains several subroutines. Each of them
is used to carry out a specific step in the model formulation as well
as solution procedures. All subroutines are designed in a general
form, so that they can be used to simulate models of higher level of
sophistication with little or no modification. The potential cascade
flow results obtained from the present study are in good agreement

with those of others published.




